Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 26
Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.403
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Motion Capture Sensor-Based Emotion Recognition Using a Bi-Modular Sequential Neural Network
Ist Teil von
  • Sensors (Basel, Switzerland), 2022-01, Vol.22 (1), p.403
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2022
Quelle
MEDLINE
Beschreibungen/Notizen
  • Motion capture sensor-based gait emotion recognition is an emerging sub-domain of human emotion recognition. Its applications span a variety of fields including smart home design, border security, robotics, virtual reality, and gaming. In recent years, several deep learning-based approaches have been successful in solving the Gait Emotion Recognition (GER) problem. However, a vast majority of such methods rely on Deep Neural Networks (DNNs) with a significant number of model parameters, which lead to model overfitting as well as increased inference time. This paper contributes to the domain of knowledge by proposing a new lightweight bi-modular architecture with handcrafted features that is trained using a RMSprop optimizer and stratified data shuffling. The method is highly effective in correctly inferring human emotions from gait, achieving a micro-mean average precision of 0.97 on the Edinburgh Locomotive Mocap Dataset. It outperforms all recent deep-learning methods, while having the lowest inference time of 16.3 milliseconds per gait sample. This research study is beneficial to applications spanning various fields, such as emotionally aware assistive robotics, adaptive therapy and rehabilitation, and surveillance.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX