Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 66

Details

Autor(en) / Beteiligte
Titel
Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph
Ist Teil von
  • Scientific reports, 2021-07, Vol.11 (1), p.14250-14250, Article 14250
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
  • Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical analysis and trained an ML model on a retrospective cohort of 5148 patients from 24 hospitals in Hong Kong to classify COVID-19 and other aetiology of pneumonia. We validated the model on three temporal validation sets from different waves of infection in Hong Kong. For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9–95.8%; Sensitivity: 55.5–77.8%; Specificity: 91.5–98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. Our study showed that machine learning model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX