Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 33

Details

Autor(en) / Beteiligte
Titel
IoT enhanced metaheuristics with deep transfer learning based robust crop pest recognition and classification
Ist Teil von
  • Alexandria engineering journal, 2023-12, Vol.84, p.100-111
Ort / Verlag
Elsevier
Erscheinungsjahr
2023
Quelle
Elsevier ScienceDirect Journals Collection
Beschreibungen/Notizen
  • This study addresses the pressing need to enhance food production and quality by tackling the challenge of crop pest recognition. Traditional methods for identifying crop pests are time-consuming and reliant on highly trained experts. To overcome these limitations, this research introduces the Enhanced Metaheuristics with Deep Transfer Learning-based Robust Crop Pest Recognition and Classification (EMDTL-CPRC) model. The EMDTL-CPRC model incorporates several innovative elements, including contrast enhancement to improve image quality, the integration of the Whale Optimization Algorithm (WOA) with the Residual Network (ResNet) approach as a feature extractor, and the utilization of the Long Short-Term Memory (LSTM) method for pest recognition. Furthermore, to enhance the efficacy of the LSTM approach, a Chaotic Salp Swarm Algorithm (CSSA) is incorporated. The simulation results, based on a comprehensive crop pest dataset, demonstrate the superior performance of the EMDTL-CPRC model in crop pest classification. By enhancing pest recognition accuracy and streamlining the process, this research contributes to the overall goal of improving agricultural crop productivity and ensuring the supply of healthy food.
Sprache
Englisch
Identifikatoren
ISSN: 1110-0168
DOI: 10.1016/j.aej.2023.11.008
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_ef429cf92157490ab986ab57ce836f66

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX