Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 34

Details

Autor(en) / Beteiligte
Titel
Parameters Estimation in Non-Negative Integer-Valued Time Series: Approach Based on Probability Generating Functions
Ist Teil von
  • Axioms, 2023-01, Vol.12 (2), p.112
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • This manuscript deals with a parameter estimation of a non-negative integer-valued (NNIV) time series based on the so-called probability generating function (PGF) method. The theoretical background of the PGF estimation technique for a very general, stationary class of NNIV time series is described, as well as the asymptotic properties of the obtained estimates. After that, a particular emphasis is given to PGF estimators of independent identical distributed (IID) and integer-valued non-negative autoregressive (INAR) series. A Monte Carlo study of the thus obtained PGF estimates, based on a numerical integration of the appropriate objective function, is also presented. For this purpose, numerical quadrature formulas were computed using Gegenbauer orthogonal polynomials. Finally, the application of the PGF estimators in the dynamic analysis of some actual data is given.
Sprache
Englisch
Identifikatoren
ISSN: 2075-1680
eISSN: 2075-1680
DOI: 10.3390/axioms12020112
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_ee35d7ec7cd44f48811b595ba76f287b

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX