Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 41

Details

Autor(en) / Beteiligte
Titel
The Tropical Invasive Seagrass, Halophila stipulacea , Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana
Ist Teil von
  • Frontiers in plant science, 2018-07, Vol.9, p.950-950
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2018
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The tropical seagrass species, , originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of exposed to different salinities, with that of its nearest freshwater relative, . To achieve this goal, and . plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) : control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) . : control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In , leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II ( / ) suggesting that photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and / , followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.
Sprache
Englisch
Identifikatoren
ISSN: 1664-462X
eISSN: 1664-462X
DOI: 10.3389/fpls.2018.00950
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_edcae5a0b7364e7e987a9fdbad271643

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX