Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 57

Details

Autor(en) / Beteiligte
Titel
A Blockchain-Based Deep-Learning-Driven Architecture for Quality Routing in Wireless Sensor Networks
Ist Teil von
  • IEEE access, 2023, Vol.11, p.31036-31051
Ort / Verlag
IEEE
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Over the past few years, great importance has been given to wireless sensor networks (WSNs) as they play a significant role in facilitating the world with daily life services like healthcare, military, social products, etc. However, heterogeneous nature of WSNs makes them prone to various attacks, which results in low throughput, and high network delay and high energy consumption. In the WSNs, routing is performed using different routing protocols like low-energy adaptive clustering hierarchy (LEACH), heterogeneous gateway-based energy-aware multi-hop routing (HMGEAR), etc. In such protocols, some nodes in the network may perform malicious activities. Therefore, four deep learning (DL) techniques and a real-time message content validation (RMCV) scheme based on blockchain are used in the proposed network for the detection of malicious nodes (MNs). Moreover, to analyse the routing data in the WSN, DL models are trained on a state-of-the-art dataset generated from LEACH, known as WSN-DS 2016. The WSN contains three types of nodes: sensor nodes, cluster heads (CHs) and the base station (BS). The CHs after aggregating the data received from the sensor nodes, send it towards the BS. Furthermore, to overcome the single point of failure issue, a decentralized blockchain is deployed on CHs and BS. Additionally, MNs are removed from the network using RMCV and DL techniques. Moreover, legitimate nodes (LNs) are registered in the blockchain network using proof-of-authority consensus protocol. The protocol outperforms proof-of-work in terms of computational cost. Later, routing is performed between the LNs using different routing protocols and the results are compared with original LEACH and HMGEAR protocols. The results show that the accuracy of GRU is 97%, LSTM is 96%, CNN is 92% and ANN is 90%. Throughput, delay and the death of the first node are computed for LEACH, LEACH with DL, LEACH with RMCV, HMGEAR, HMGEAR with DL and HMGEAR with RMCV. Moreover, Oyente is used to perform the formal security analysis of the designed smart contract. The analysis shows that blockchain network is resilient against vulnerabilities.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2023.3259982
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_ec9cd98ad4924560853153c712901802

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX