Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 1735

Details

Autor(en) / Beteiligte
Titel
Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection
Ist Teil von
  • Frontiers in bioengineering and biotechnology, 2022-05, Vol.10, p.876672
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Diabetes mellitus is characterized by elevated blood glucose levels, however patients with diabetes may also develop hypoglycemia due to treatment. There is an increasing demand for non-invasive blood glucose monitoring and trends detection amongst people with diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive sensors for blood glucose monitoring have witnessed considerable advances. This review is an update on recent contributions utilizing novel sensing technologies over the past five years which include electrocardiogram, electromagnetic, bioimpedance, photoplethysmography, and acceleration measures as well as bodily fluid glucose sensors to monitor glucose and trend detection. We also review methods that use machine learning algorithms to predict blood glucose trends, especially for high risk events such as hypoglycemia. Convolutional and recurrent neural networks, support vector machines, and decision trees are examples of such machine learning algorithms. Finally, we address the key limitations and challenges of these studies and provide recommendations for future work.
Sprache
Englisch
Identifikatoren
ISSN: 2296-4185
eISSN: 2296-4185
DOI: 10.3389/fbioe.2022.876672
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_e947a00a376446908d1aae1f14912905

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX