Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 244

Details

Autor(en) / Beteiligte
Titel
Root growth of Lotus corniculatus interacts with P distribution in young sandy soil
Ist Teil von
  • Biogeosciences, 2013-03, Vol.10 (3), p.1737-1749
Ort / Verlag
Copernicus GmbH
Erscheinungsjahr
2013
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In the high-density samplings, we excavated soil-cubes of 10 × 10 × 10 cm size from the topsoil of 3 mini-plot areas (50 × 50 cm) each on the ES and the CCC on which L. corniculatus had been planted (ES) or occurred spontaneously (CCC) and for each cube separated the soil attached to the roots (root-adjacent soil) from the remaining soil (root-distant soil). Root length density was negatively correlated with labile P (resin-extractable P) in the root-distant soil of the CCC plots and with water-soluble P in the root-distant soil of the ES plots. The results suggest that P depletion by root uptake during plant growth soon overrode the effect of preferential root allocation in the relationship between root density and plant-available soil P heterogeneity.
Sprache
Englisch
Identifikatoren
ISSN: 1726-4189, 1726-4170
eISSN: 1726-4189
DOI: 10.5194/bg-10-1737-2013
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_e8f3b02f783245edbbf4597d049f42ab

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX