Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 3975
Water (Basel), 2021-05, Vol.13 (9), p.1179
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Inversion of Chlorophyll-a Concentration in Donghu Lake Based on Machine Learning Algorithm
Ist Teil von
  • Water (Basel), 2021-05, Vol.13 (9), p.1179
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Machine learning algorithm, as an important method for numerical modeling, has been widely used for chlorophyll-a concentration inversion modeling. In this work, a variety of models were built by applying five kinds of datasets and adopting back propagation neural network (BPNN), extreme learning machine (ELM), support vector machine (SVM). The results revealed that modeling with multi-factor datasets has the possibility to improve the accuracy of inversion model, and seven band combinations are better than seven single bands when modeling, Besides, SVM is more suitable than BPNN and ELM for chlorophyll-a concentration inversion modeling of Donghu Lake. The SVM model based on seven three-band combination dataset (SVM3) is the best inversion one among all multi-factor models that the mean relative error (MRE), mean absolute error (MAE), root mean square error (RMSE) of the SVM model based on single-factor dataset (SF-SVM) are 30.82%, 9.44 μg/L and 12.66 μg/L, respectively. SF-SVM performs best in single-factor models, MRE, MAE, RMSE of SF-SVM are 28.63%, 13.69 μg/L and 16.49 μg/L, respectively. In addition, the simulation effect of SVM3 is better than that of SF-SVM. On the whole, an effective model for retrieving chlorophyll-a concentration has been built based on machine learning algorithm, and our work provides a reliable basis and promotion for exploring accurate and applicable chlorophyll-a inversion model.
Sprache
Englisch
Identifikatoren
ISSN: 2073-4441
eISSN: 2073-4441
DOI: 10.3390/w13091179
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_e79e1b4735f44a45b09cd9c8e5ba5f01

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX