Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Enhanced calcium release in the acute neuronopathic form of Gaucher disease
Ist Teil von
Neurobiology of disease, 2005-02, Vol.18 (1), p.83-88
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2005
Quelle
ScienceDirect
Beschreibungen/Notizen
Gaucher disease is an inherited metabolic disorder caused by defective activity of the lysosomal enzyme, glucocerebrosidase, resulting in accumulation of the lipids, glucosylceramide (GlcCer), and glucosylsphingosine (GlcSph). Little is known about the mechanism leading from lipid accumulation to disease, particularly in the acute and subacute neuronopathic forms of Gaucher disease, types 2 and 3, respectively. Recent work from our laboratory has shown, in animal models, that GlcCer enhances agonist-induced calcium release from intracellular stores via the ryanodine receptor, which results in neuronal cell death. We now test whether calcium release is altered in human brain tissue obtained post-mortem from Gaucher disease patients. Agonist-induced calcium release via the ryanodine receptor was significantly enhanced (P < 0.05) in brain microsomes from the acute neuronopathic form of Gaucher disease (type 2) (43 ± 6% of the calcium in microsomes) compared to the subacute (type 3) (27 ± 3%) and the non-neuronopathic (type 1) (28 ± 6%) forms, and controls (18 ± 3%), and correlated with levels of GlcCer accumulation. These findings suggest that defective calcium homeostasis may be a mechanism responsible for neuropathophysiology in acute neuronopathic Gaucher disease, and may potentially offer new therapeutic approaches for disease management.