Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 4828

Details

Autor(en) / Beteiligte
Titel
Tensile and impact behavior of 3D-printed (FeCoNi)86Al7Ti7 high entropy alloy at ambient and cryogenic temperatures
Ist Teil von
  • Materials & design, 2024-06, Vol.242, p.113020, Article 113020
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Link zum Volltext
Quelle
Electronic Journals Library
Beschreibungen/Notizen
  • [Display omitted] •The selective laser melting produced (FeCoNi)86Al7Ti7 high entropy alloy presents a refined microstructure with hierarchy.•Enhanced tensile properties at cryogenic temperatures originate from the synergy of dislocation slip, stacking faults, Lomer and Lomer-Cottrell locks.•Impact properties deteriorate with decreasing temperature, resulting from reduced dislocation activity and insufficient time for compatible deformation. High-entropy alloys (HEAs) demonstrate superior mechanical properties at room temperature, highlighting potential for engineering applications. With the increasing demand for advanced materials, especially in modern applications facing rigorous conditions, it becomes imperative to gain profound insights into the dynamic behavior of HEAs. In this study, the (FeCoNi)86Al7Ti7 HEA, renowned for exceptional printability and room-temperature mechanical properties, has been fabricated by selective laser melting (SLM), and its tensile and impact behaviors at ambient and cryogenic temperatures are systematically investigated. Experimental results reveal enhanced tensile properties as temperature decreases, achieving a high ultimate strength of 1313.6 MPa and impressive ductility of 24.8 % at 77 K. This improvement is attributed to the synergistic deformation mechanisms, including dislocation slip, stacking faults, Lomer and Lomer-Cottrell locks, which maintain a high strain-hardening rate and thus suppress strain localization. In contrast, impact properties deteriorate due to constrained dislocation mobility at high strain rates and low temperatures, with Charpy impact energy decreasing from 8.1 J at 293 K to 5.1 J at 77 K. Consequently, cracks readily initiate at cellular boundaries or defects, propagating in an intergranular manner and inducing localized deformation. This study provides valuable insights for the future applications of 3D-printed HEAs in extreme operational environments.
Sprache
Englisch
Identifikatoren
ISSN: 0264-1275
eISSN: 1873-4197
DOI: 10.1016/j.matdes.2024.113020
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_e3f9eb2b001241ed9e39aeb614081592

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX