Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 45

Details

Autor(en) / Beteiligte
Titel
670 Development of a robust manufacturing process for AB-1015, an integrated circuit T cell (ICT) products, using targeted, CRISPR integration of transgenes by electroporation (CITE) editing
Ist Teil von
  • Journal for immunotherapy of cancer, 2023-11, Vol.11 (Suppl 1), p.A759-A759
Ort / Verlag
London: BMJ Publishing Group Ltd
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • BackgroundAB-1015 is an autologous, integrated circuit T cell (ICT) product for the potential treatment of platinum-resistant ovarian cancer. AB-1015 includes a transgene cassette with an ‘AND’ logic gate designed to limit off-tumor toxicity through dual tumor antigen recognition and a dual shRNA-miR designed to resist TME suppression and to improve ICT cell function. ICT cells are generated via CRISPR integration of transgenes by electroporation (CITE), a non-viral and site-specific integration approach with the goal to provide enhanced safety and increased cargo capacity. Scalable, semi-closed, and semi-automated manufacturing processes were developed to support GMP manufacture for Ph1 clinical evaluations. Subsequently, the process was optimized to improve transgene integration frequency and prepared for GMP implementation. Phase 1 clinical investigation is currently ongoing.MethodsOn Day 0, CD4 and CD8 positive cells were isolated from fresh apheresis. Cells were activated using CD3/CD28 stimulation, electroporated with Cas9 protein, sgRNA targeting a safe harbor site (GS94), and plasmid DNA encoding the transgene. Cells were expanded until harvest and formulated into drug product. Frozen cell drug product was thawed and characterized using flow cytometry and in vitro functional assays for release and characterization.ResultsProcessing of apheresis using the AB-1015 manufacturing process resulted in average knock-in efficiencies and total therapeutic yields exceeding dose level needs. In addition to robust IFN-γ production and tumor cell killing in dual antigen-specific co-culture, ICT cells retained favorable memory phenotype (CCR7+) at harvest. Similar knock-in efficiencies and comparable phenotype and function were observed for clinical AB-1015 products in comparison to preclinical healthy donors.ConclusionsA robust, 10-day manufacturing process was successfully developed for AB-1015 that enables knock-in of a large (> 6 kb) transgene using a site-specific, non-viral integration approach. Billions of ICT cells can be generated from a single healthy donor in a semi-closed, semi-automated fashion and these ICT cells display potent anti-tumor activity in vitro and in vivo with high specificity in preclinical studies. AB-1015 is currently in Phase 1 clinical trials.
Sprache
Englisch
Identifikatoren
eISSN: 2051-1426
DOI: 10.1136/jitc-2023-SITC2023.0670
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_e085cc1d8892417d9b54f8ce75ba8096

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX