Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 1122

Details

Autor(en) / Beteiligte
Titel
Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 Rankine cycles for gas turbine waste heat recovery
Ist Teil von
  • Energy and AI, 2024-05, Vol.16, p.100372, Article 100372
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •Investigation of WHR-integrated sCO2 Rankine cycles for enhanced system performance.•Comparison of three different sCO2 cycle configurations for optimization.•Comprehensive analysis of cycle key parameters on system and ecological efficiency.•Development of an ANN-GA optimization framework for the proposed sCO2 cycles.•Achieved 57.96 % exergy efficiency, highlighting optimized superior performance. Technologies for utilizing waste heat for power generation have attracted significant attention in recent years due to their potential to enhance energy efficiency and reduce greenhouse gas emissions. This research focuses on the comparative and optimization analysis of three supercritical carbon dioxide (sCO2) Rankine cycles (simple, cascade, and split) for gas turbine waste heat recuperation. The study begins with parametric analysis, investigating the significant effects of key variables, including turbine inlet temperature, condenser inlet temperature, and pinch point temperature, on the thermal performance of advanced sCO2 power cycles. To identify the most efficient cycle configuration, a multi-objective optimization approach is employed. This approach combines a Genetic Algorithm with machine learning regression models (Random Forest, XGBoost, Artificial Neural Network, Ridge Regression, and K-Nearest Neighbors) to predict cycle performance using a dataset extracted from cycle simulations. The decision-making process for determining the optimal cycle configuration is facilitated by the TOPSIS (technique for order of preference by similarity to the ideal solution) method. The study's major findings reveal that the split cycle outperforms the simple and cascade configurations in terms of power generation across various operating conditions. The optimized split cycle not only demonstrates superior power output but also exhibits enhanced net power output, heat recovery, system and exergy efficiency of 7.99 MW, 76.17 %, 26.86 % and 57.96 %, respectively, making it a promising choice for waste heat recovery applications. This research has the potential to contribute to the advancement and widespread adoption of waste heat recovery in energy technologies boosting system efficiency and economic feasibility. It provides a new perspective for future research, contributing to the improvement of energy generation infrastructure. [Display omitted]
Sprache
Englisch
Identifikatoren
ISSN: 2666-5468
eISSN: 2666-5468
DOI: 10.1016/j.egyai.2024.100372
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_decf3ce39b524b61834687d6f811e9e7

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX