Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 106
BMC bioinformatics, 2017-08, Vol.18 (1), p.371-371, Article 371
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
eccCL: parallelized GPU implementation of Ensemble Classifier Chains
Ist Teil von
  • BMC bioinformatics, 2017-08, Vol.18 (1), p.371-371, Article 371
Ort / Verlag
England: BioMed Central Ltd
Erscheinungsjahr
2017
Quelle
MEDLINE
Beschreibungen/Notizen
  • Multi-label classification has recently gained great attention in diverse fields of research, e.g., in biomedical application such as protein function prediction or drug resistance testing in HIV. In this context, the concept of Classifier Chains has been shown to improve prediction accuracy, especially when applied as Ensemble Classifier Chains. However, these techniques lack computational efficiency when applied on large amounts of data, e.g., derived from next-generation sequencing experiments. By adapting algorithms for the use of graphics processing units, computational efficiency can be greatly improved due to parallelization of computations. Here, we provide a parallelized and optimized graphics processing unit implementation (eccCL) of Classifier Chains and Ensemble Classifier Chains. Additionally to the OpenCL implementation, we provide an R-Package with an easy to use R-interface for parallelized graphics processing unit usage. eccCL is a handy implementation of Classifier Chains on GPUs, which is able to process up to over 25,000 instances per second, and thus can be used efficiently in high-throughput experiments. The software is available at http://www.heiderlab.de .

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX