Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Automatika, 2023-10, Vol.64 (4), p.996-1009
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Watchdog malicious node detection and isolation using deep learning for secured communication in MANET
Ist Teil von
  • Automatika, 2023-10, Vol.64 (4), p.996-1009
Ort / Verlag
Ljubljana: Taylor & Francis Ltd
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.
Sprache
Englisch
Identifikatoren
ISSN: 0005-1144
eISSN: 1848-3380
DOI: 10.1080/00051144.2023.2241766
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_da9fc0282da04894ad5801114e986103

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX