Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Thermophysical Properties of Beef Steaks Varying in USDA Quality Grade and Internal Temperature
Ist Teil von
Meat and muscle biology, 2022-07, Vol.5 (3)
Ort / Verlag
Iowa State University Digital Press
Erscheinungsjahr
2022
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
The objectives of this study were to determine the influence of quality grade and internal temperature on the thermophysical properties of beef strip steaks. Beef strip loins (n=24) were collected from USDA Prime (PR), Low Choice(LC), and Standard (ST) carcasses. Strip loins were fabricated into 2.54 cm steaks at 21 d postmortem and randomly assigned to an internal temperature (4°C, 25°C, 55°C, 60°C, 71°C, 77°C). Steaks were subjected to various thermal and physical property measurements. No quality grade × internal temperature interaction was observed for diffusivity and conductivity (P > 0.05). Steaks tempered to 25°C had the greatest conductivity compared with all other internal temperature treatments (P = 0.021). A quality grade×internal temperature interaction was observed for center myosin and sarcoplasmic protein enthalpy values (P < 0.001). Raw (4°C and 25°C) ST steaks had lower enthalpy values compared with raw PR and LC steaks (P < 0.05). Raw steaks had greater surface myosin and both center and surface actin enthalpy values (P < 0.05). A quality grade × internal temperature was observed for surface and center viscoelasticity (P < 0.05). Raw steaks possessed less elastic behavior compared with cooked steaks, regardless of quality grade (P<0.05). Quality grade and internal temperature impacted expressible moisture and water holding capacity (P ≤ 0.001). ST steaks possessed increased expressible moisture and water holding capacity compared with LC and PR steaks (P<0.05). A quality grade×internal temperature was observed for Warner-Bratzler shear force and springiness (P ≤ 0.008). Internal temperature impacted all texture profile analysis attributes (P < 0.05). PR steaks were more cohesive than ST steaks (P = 0.011). These data show that final internal temperature and USDA quality grade impact thermophysical properties of beef steaks.