Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 2081

Details

Autor(en) / Beteiligte
Titel
A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population
Ist Teil von
  • Scientific reports, 2023-01, Vol.13 (1), p.13-13, Article 13
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Risk prediction models are frequently used to identify individuals at risk of developing hypertension. This study evaluates different machine learning algorithms and compares their predictive performance with the conventional Cox proportional hazards (PH) model to predict hypertension incidence using survival data. This study analyzed 18,322 participants on 24 candidate features from the large Alberta’s Tomorrow Project (ATP) to develop different prediction models. To select the top features, we applied five feature selection methods, including two filter-based: a univariate Cox p-value and C-index; two embedded-based: random survival forest and least absolute shrinkage and selection operator (Lasso); and one constraint-based: the statistically equivalent signature (SES). Five machine learning algorithms were developed to predict hypertension incidence: penalized regression Ridge, Lasso, Elastic Net (EN), random survival forest (RSF), and gradient boosting (GB), along with the conventional Cox PH model. The predictive performance of the models was assessed using C-index. The performance of machine learning algorithms was observed, similar to the conventional Cox PH model. Average C-indexes were 0.78, 0.78, 0.78, 0.76, 0.76, and 0.77 for Ridge, Lasso, EN, RSF, GB and Cox PH, respectively. Important features associated with each model were also presented. Our study findings demonstrate little predictive performance difference between machine learning algorithms and the conventional Cox PH regression model in predicting hypertension incidence. In a moderate dataset with a reasonable number of features, conventional regression-based models perform similar to machine learning algorithms with good predictive accuracy.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-022-27264-x
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_d211498a7c0248f58d837362168601ec

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX