Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Characterization of Lorenz number with Seebeck coefficient measurement
Ist Teil von
  • APL materials, 2015-04, Vol.3 (4), p.041506-041506-5
Ort / Verlag
United States: American Institute of Physics
Erscheinungsjahr
2015
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • In analyzing zT improvements due to lattice thermal conductivity (κL) reduction, electrical conductivity (σ) and total thermal conductivity (κTotal) are often used to estimate the electronic component of the thermal conductivity (κE) and in turn κL from κL = ∼ κTotal − LσT. The Wiedemann-Franz law, κE = LσT, where L is Lorenz number, is widely used to estimate κE from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10−8 WΩK−2 (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10−8 WΩK−2 for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: L=1.5+exp−|S|116 (where L is in 10−8 WΩK−2 and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si0.8Ge0.2 where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity.
Sprache
Englisch
Identifikatoren
ISSN: 2166-532X
eISSN: 2166-532X
DOI: 10.1063/1.4908244
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_d206f2f5acd9498f895aaa79b912a2e3
Format
Schlagworte
MATERIALS SCIENCE

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX