Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 38011

Details

Autor(en) / Beteiligte
Titel
Recent Advances in Carbon‐Based Electrodes for Energy Storage and Conversion
Ist Teil von
  • Advanced science, 2023-06, Vol.10 (18), p.e2301045-n/a
Ort / Verlag
Germany: John Wiley & Sons, Inc
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Carbon‐based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next‐generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state‐of‐the‐art overview of these advanced carbon‐based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium‐ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter‐layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon‐based electrodes in energy storage and conversion. Carbon‐based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are among the most rapidly emerging building blocks for nanotechnologies. This review elucidates the advantages and the crucial role of these family materials and summarizes the prevailing strategies for achieving high‐performance energy storage and conversion applications.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX