Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 171
BMC bioinformatics, 2023-12, Vol.24 (1), p.484-484, Article 484
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
GPDRP: a multimodal framework for drug response prediction with graph transformer
Ist Teil von
  • BMC bioinformatics, 2023-12, Vol.24 (1), p.484-484, Article 484
Ort / Verlag
England: BioMed Central Ltd
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • In the field of computational personalized medicine, drug response prediction (DRP) is a critical issue. However, existing studies often characterize drugs as strings, a representation that does not align with the natural description of molecules. Additionally, they ignore gene pathway-specific combinatorial implication. In this study, we propose drug Graph and gene Pathway based Drug response prediction method (GPDRP), a new multimodal deep learning model for predicting drug responses based on drug molecular graphs and gene pathway activity. In GPDRP, drugs are represented by molecular graphs, while cell lines are described by gene pathway activity scores. The model separately learns these two types of data using Graph Neural Networks (GNN) with Graph Transformers and deep neural networks. Predictions are subsequently made through fully connected layers. Our results indicate that Graph Transformer-based model delivers superior performance. We apply GPDRP on hundreds of cancer cell lines' bulk RNA-sequencing data, and it outperforms some recently published models. Furthermore, the generalizability and applicability of GPDRP are demonstrated through its predictions on unknown drug-cell line pairs and xenografts. This underscores the interpretability achieved by incorporating gene pathways.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX