Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Machine learning: science and technology, 2024-03, Vol.5 (1), p.015054
2024

Details

Autor(en) / Beteiligte
Titel
Optimized multifidelity machine learning for quantum chemistry
Ist Teil von
  • Machine learning: science and technology, 2024-03, Vol.5 (1), p.015054
Ort / Verlag
Bristol: IOP Publishing
Erscheinungsjahr
2024
Link zum Volltext
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Machine learning (ML) provides access to fast and accurate quantum chemistry (QC) calculations for various properties of interest such as excitation energies. It is often the case that high accuracy in prediction using a ML model, demands a large and costly training set. Various solutions and procedures have been presented to reduce this cost. These include methods such as Δ-ML, hierarchical-ML, and multifidelity machine learning (MFML). MFML combines various Δ-ML like sub-models for various fidelities according to a fixed scheme derived from the sparse grid combination technique. In this work we implement an optimization procedure to combine multifidelity models in a flexible scheme resulting in optimized MFML (o-MFML) that provides superior prediction capabilities. This hyperparameter optimization is carried out on a holdout validation set of the property of interest. This work benchmarks the o-MFML method in predicting the atomization energies on the QM7b dataset, and again in the prediction of excitation energies for three molecules of growing size. The results indicate that o-MFML is a strong methodological improvement over MFML and provides lower error of prediction. Even in cases of poor data distributions and lack of clear hierarchies among the fidelities, which were previously identified as issues for multifidelity methods, the o-MFML is advantageous for the prediction of quantum chemical properties.
Sprache
Englisch
Identifikatoren
eISSN: 2632-2153
DOI: 10.1088/2632-2153/ad2cef
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_bf3830a5c44b45d8af7d270a2ca3dfaa

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX