Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 162

Details

Autor(en) / Beteiligte
Titel
Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation
Ist Teil von
  • BMC plant biology, 2019-11, Vol.19 (1), p.479-12, Article 479
Ort / Verlag
England: BioMed Central Ltd
Erscheinungsjahr
2019
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • Salinity is one of the damaging abiotic stress factor. Proper management techniques have been proposed to considerably lower the intensity of salinity on crop growth and productivity. Therefore experiments were conducted to assess the role of improved nitrogen (N) supplementation on the growth and salinity stress tolerance in wheat by analyzing the antioxidants, osmolytes and secondary metabolites. Salinity (100 mM NaCl) stress imparted deleterious effects on the chlorophyll and carotenoid synthesis as well as the photosynthetic efficiency. N supplementation resulted in increased photosynthetic rate, stomatal conductance and internal CO concentration with effects being much obvious in seedlings treated with higher N dose. Under non-saline conditions at both N levels, protease and lipoxygenase activity reduced significantly reflecting in reduced oxidative damage. Such effects were accompanied by reduced generation of toxic radicals like hydrogen peroxide and superoxide, and lipid peroxidation in N supplemented seedlings. Antioxidant defence system was up-regulated under saline and non-saline growth conditions due to N supplementation leading to protection of major cellular processes like photosynthesis, membrane structure and function, and mineral assimilation. Increased osmolyte and secondary metabolite accumulation, and redox components in N supplemented plants regulated the ROS metabolism and NaCl tolerance by further strengthening the antioxidant mechanisms. Findings of present study suggest that N availability regulated the salinity tolerance by reducing Na uptake and strengthening the key tolerance mechanisms.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX