Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 2421

Details

Autor(en) / Beteiligte
Titel
Inverse design of organic light-emitting diode structure based on deep neural networks
Ist Teil von
  • Nanophotonics (Berlin, Germany), 2021-12, Vol.10 (18), p.4533-4541
Ort / Verlag
Berlin: De Gruyter
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The optical properties of thin-film light emitting diodes (LEDs) are strongly dependent on their structures due to light interference inside the devices. However, the complexity of the design space grows exponentially with the number of design parameters, making it challenging to optimize the optical properties of multilayer LEDs with rigorous electromagnetic simulations. In this work, we demonstrate an artificial neural network that can predict the light extraction efficiency of an organic LED structure in 30 ms, which is ∼10 times faster than the rigorous simulation in a single-treaded execution with root-mean-squared error of 1.86 × 10 . The effective inference time per structure is brought down to ∼0.6 μs with unaltered error rate with parallelization. We also show that our neural networks can efficiently solve the inverse problem – finding a device design that exhibits the desired light extraction spectrum – within the similar time scale. We investigate the one-to-many mapping issue of the inverse problem and find that the degeneracy can be lifted by incorporating additional emission spectra at different observing angles. Furthermore, the forward neural network is combined with a conventional genetic algorithm to address additional large-scale optimization problems including maximization of light extraction efficiency and minimization of angle dependent color shift. Our approach establishes a platform for tackling computation-heavy optimization tasks with one-time computational cost.
Sprache
Englisch
Identifikatoren
ISSN: 2192-8614, 2192-8606
eISSN: 2192-8614
DOI: 10.1515/nanoph-2021-0434
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_bc049cbc8f49424ab8dead14590449dc

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX