Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 238

Details

Autor(en) / Beteiligte
Titel
Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair
Ist Teil von
  • Biomedicine & pharmacotherapy, 2021-10, Vol.142, p.112056, Article 112056
Ort / Verlag
France: Elsevier Masson SAS
Erscheinungsjahr
2021
Quelle
Access via ScienceDirect (Elsevier)
Beschreibungen/Notizen
  • Plasma exosomes derived from healthy people have been shown to be beneficial in terms of protecting against ischemia-reperfusion injury or acute myocardial infarction (AMI). However, a pathological condition may severely affect the constitution and biological activity of exosomes. In our study, we isolated plasma exosomes from healthy volunteers and convalescent AMI patients (3–7 d after onset). Compared to exosomes from healthy controls (Nor-Exo), exosomes from convalescent AMI patients (AMI-Exo) exhibited an impaired ability to repair damaged cardiomyocytes both in vitro and in vivo. miRNA sequencing and PCR analysis indicated that miR-342-3p was significantly downregulated in AMI-Exo. Moreover, miR-342-3p alleviated H2O2-induced injury and reduced apoptosis and autophagy in H9c2 cardiomyocytes, while in vivo restoration of miR-342-3p expression enhanced the reparative function of AMI-Exo. Further mechanistic studies revealed that the SOX6 and TFEB genes were two direct and functional targets of miR-342-3p. Taken together, during the early convalescent phase after AMI, dysregulated miR-342-3p in plasma exosomes might be responsible for their impaired cardioprotective potential. miR-342-3p contributed to exosome-mediated heart repair by inhibiting cardiomyocyte apoptosis and autophagy through targeting SOX6 and TFEB, respectively. Our work provided novel insights on the role of plasma exosomes in the natural process of cardiac repair after AMI and suggestions for therapy development. •miR-342-3p is down-regulated in plasma exosomes from convalescent AMI patients (AMI-Exo).•miR-342-3p alleviated H2O2-induced cardiomyocyte injury and reduced apoptosis and autophagy.•Restoring miR-342-3p expression enhanced the reparative function of AMI-Exo.•SOX6 and TFEB were two direct and functional targets of miR-342-3p.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX