Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 35

Details

Autor(en) / Beteiligte
Titel
Hosted Cuckoo Optimization Algorithm with Stacked Autoencoder-Enabled Sarcasm Detection in Online Social Networks
Ist Teil von
  • Applied sciences, 2022-07, Vol.12 (14), p.7119
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Sarcasm detection has received considerable interest in online social media networks due to the dramatic expansion in Internet usage. Sarcasm is a linguistic expression of dislikes or negative emotions by using overstated language constructs. Recently, detecting sarcastic posts on social networking platforms has gained popularity, especially since sarcastic comments in the form of tweets typically involve positive words that describe undesirable or negative characteristics. Simultaneously, the emergence of machine learning (ML) algorithms has made it easier to design efficacious sarcasm detection techniques. This study introduces a new Hosted Cuckoo Optimization Algorithm with Stacked Autoencoder-Enabled Sarcasm Detection and Classification (HCOA-SACDC) model. The presented HCOA-SACDC model predominantly focuses on the detection and classification of sarcasm in the OSN environment. To achieve this, the HCOA-SACDC model pre-processes input data to make them compatible for further processing. Furthermore, the term frequency-inverse document frequency (TF-IDF) model is employed for the useful extraction of features. Moreover, the stacked autoencoder (SAE) model is utilized for the recognition and categorization of sarcasm. Since the parameters related to the SAE model considerably affect the overall classification performance, the HCO algorithm is exploited to fine-tune the parameters involved in the SAE, showing the novelty of the work. A comprehensive experimental analysis of a benchmark dataset is performed to highlight the superior outcomes of the HCOA-SACDC model. The simulation results indicate that the HCOA-SACDC model accomplished enhanced performance over other techniques.
Sprache
Englisch
Identifikatoren
ISSN: 2076-3417
eISSN: 2076-3417
DOI: 10.3390/app12147119
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_baf8257a525148f7b59093359c7cbed9

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX