Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 1491
EAI endorsed transactions on industrial networks and intelligent systems, 2022-08, Vol.9 (32), p.e5
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Intelligent Reflecting Surface assisted RF Energy Harvesting Mobile Edge Computing NOMA Networks: Performance Analysis and Optimization
Ist Teil von
  • EAI endorsed transactions on industrial networks and intelligent systems, 2022-08, Vol.9 (32), p.e5
Ort / Verlag
European Alliance for Innovation (EAI)
Erscheinungsjahr
2022
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • In this paper, we focus on the performance analysis and optimization of an RF energy harvesting (EH) mobile edge computing (MEC) network by the assistance of the intelligent reflecting surface (IRS) and non-orthogonal multiple access (NOMA) schemes. Specifically, a pair of users harvest RF energy from a hybrid access point (HAP) and offloads their tasks to the MEC server at HAP through wireless links by employing an IRS-aided and uplink NOMA scheme. To evaluate the performance of this proposed system, the closed-form expressions of successful computation and energy transfer efficiency probabilities are derived. We further formulate a multi-objective optimization problem and propose an algorithm to find the optimal energy harvesting time switching ratio value to achieve the best performance, namely SENSGA-II. Moreover, the impacts of the network parameters are provided to draw helpful insight into the system performance. Finally, the Monte-Carlo simulation results are shown to confirm the correctness of our analysis. The results have shown that the deployment of IRS can improve the performance of this considered RF EH NOMA system by increasing the number of reflecting elements.
Sprache
Englisch
Identifikatoren
ISSN: 2410-0218
eISSN: 2410-0218
DOI: 10.4108/eetinis.v9i32.1376
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b89b71a48e564dad9bb9758d0624cce1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX