Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 104

Details

Autor(en) / Beteiligte
Titel
Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data
Ist Teil von
  • Frontiers in physiology, 2022-03, Vol.13, p.832457
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2022
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • Advances in cellular and molecular interrogation of kidney tissue have ushered a new era of understanding the pathogenesis of kidney disease and potentially identifying molecular targets for therapeutic intervention. Classifying cells and identifying subtypes and states induced by injury is a foundational task in this context. High resolution Imaging-based approaches such as large-scale fluorescence 3D imaging offer significant advantages because they allow preservation of tissue architecture and provide a definition of the spatial context of each cell. We recently described the Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive analysis, quantitation and semiautomated classification of labeled cells in 3D image volumes. We also established and demonstrated an imaging-based classification using deep learning of cells in intact tissue using 3D nuclear staining with 4',6-diamidino-2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in analyzing 3D imaging of kidney tissue, and how combining machine learning with cytometry is a powerful approach to leverage the depth of content provided by high resolution imaging into a highly informative analytical output. Therefore, imaging a small tissue specimen will yield big scale data that will enable cell classification in a spatial context and provide novel insights on pathological changes induced by kidney disease.
Sprache
Englisch
Identifikatoren
ISSN: 1664-042X
eISSN: 1664-042X
DOI: 10.3389/fphys.2022.832457
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b7f3a5b8d9c040928bd6b1ba40b71a3f

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX