Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 19

Details

Autor(en) / Beteiligte
Titel
Accelerating Fully Homomorphic Encryption Through Architecture-Centric Analysis and Optimization
Ist Teil von
  • IEEE access, 2021, Vol.9, p.98772-98789
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2021
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Homomorphic Encryption (HE) has drawn significant attention as a privacy-preserving approach for cloud computing because it allows computation on encrypted messages called ciphertexts. Among the numerous HE schemes proposed thus far, HE for Arithmetic of Approximate Numbers (HEAAN) is rapidly gaining in popularity across a wide range of applications, as it supports messages that can tolerate approximate computations with no limit on the number of arithmetic operations applicable to the ciphertexts. A critical shortcoming of HE is the high computation complexity of ciphertext arithmetic; specifically, HE multiplication (HE Mul) is more than 10,000 times slower than the corresponding multiplication between unencrypted messages. This has led to a large body of HE acceleration studies, including those that exploit FPGAs; however, a rigorous analysis of the computational complexity and data access patterns of HE Mul is lacking. Moreover, the proposals mostly focused on designs with small parameter sizes, making it difficult accurately to estimate the performance of the HE accelerators when conducting a series of complex arithmetic operations. In this paper, we first describe how HE Mul of HEAAN is performed in a manner friendly to non-crypto experts. Then, we conduct a disciplined analysis of its computational and memory-access characteristics, through which we (1) extract parallelism in the key functions composing HE Mul and (2) demonstrate how to map the parallelism effectively to popular parallel processing platforms, CPUs and GPUs, by applying a series of optimizations such as transposing matrices and pinning data to threads. This leads to performance improvements of HE Mul on a CPU and a GPU by <inline-formula> <tex-math notation="LaTeX">2.06\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4.05\times </tex-math></inline-formula>, respectively, over the reference HEAAN running on a CPU with 24 threads.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2021.3096189
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b72555b38cbf4ac4bb468b7c82235abe

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX