Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 35

Details

Autor(en) / Beteiligte
Titel
Deep Siamese Networks for Plant Disease Detection
Ist Teil von
  • EPJ Web of Conferences, 2020, Vol.226, p.3010
Ort / Verlag
Les Ulis: EDP Sciences
Erscheinungsjahr
2020
Quelle
Elektronische Zeitschriftenbibliothek - Freely accessible e-journals
Beschreibungen/Notizen
  • Crop losses are a major threat to the wellbeing of rural families, to the economy and governments, and to food security worldwide. The goal of our research is to develop a multi-functional platform to help the farming community to tilt against plant diseases. In our previous works, we reported about the creation of a special database of healthy and diseased plants’ leaves consisting of five sets of grapes images and proposed a special classification model based on a deep siamese network followed by k -nearest neighbors (KNN) classifier. Then we extended our database to five sets of images for grape, corn, and wheat – 611 images in total. Since after this extension the classification accuracy decreased to 86 %, we propose in this paper a novel architecture with a deep siamese network as feature extractor and a single-layer perceptron as a classifier that results in a significant gain of accuracy, up to 96 %.
Sprache
Englisch
Identifikatoren
ISSN: 2100-014X, 2101-6275
eISSN: 2100-014X
DOI: 10.1051/epjconf/202022603010
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b6294d2f84f44e87a2c3fccec4e2a2f5

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX