Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 66

Details

Autor(en) / Beteiligte
Titel
Enhancement of the Biological and Mechanical Performances of Sintered Hydroxyapatite by Multiple Ions Doping
Ist Teil von
  • Frontiers in materials, 2020-07, Vol.7
Ort / Verlag
Frontiers Media S.A
Erscheinungsjahr
2020
Link zum Volltext
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • In the present work, hydroxyapatite (HA) nanoparticles doped with Mg2+, Sr2+, and Zn2+ ions are developed by wet neutralization method and then sintered at 1,250°C to obtain bulk consolidated materials. Physicochemical and microstructural analyses show that the presence of doping ions in the HA structure induced the formation of βTCP as secondary phase, during the sintering process, and we found that this effect is depending on the stability of the various doping ions in the hydroxyapatite lattice itself. We also found that the formation of βTCP as secondary phase, in turn, confines the grain growth of HA induced by the high-temperature sintering process, thus leading to a strong increase of the flexural strength of the bulk materials, according to Hall-Petch-like law. Furthermore, we found that the doping ions enter also in the structure of the βTCP phase; besides the grain growth confinement, also the solubility and ion release ability of the final materials were enhanced. In addition to ameliorate the mechanical performance, the described phenomena also activate multiple biofunctionalities: (i) ability to upregulate various genes involved in the osteogenesis, as obtained by human adipose stem cells culture and evaluated by array technology; (ii) enhanced resistance to the adhesion and proliferation of Gram+ and Gram– bacterial strains. Hence, our results open a perspective for the use of sintered multiple ion-doped HA to develop ceramic biodevices, such as plates, screws, or other osteosynthesis media, with enhanced strength, osteointegrability, and the ability to prevent post-surgical infections.
Sprache
Englisch
Identifikatoren
ISSN: 2296-8016
eISSN: 2296-8016
DOI: 10.3389/fmats.2020.00224
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b5eb15432890429f8ffd33a5ce3b847f

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX