Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Many anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) neutralizing antibodies target the angiotensin-converting enzyme 2 (ACE2) binding site on viral spike receptor-binding domains (RBDs). Potent antibodies recognize exposed variable epitopes, often rendering them ineffective against other sarbecoviruses and SARS-CoV-2 variants. Class 4 anti-RBD antibodies against a less-exposed, but more-conserved, cryptic epitope could recognize newly emergent zoonotic sarbecoviruses and variants, but they usually show only weak neutralization potencies. Here, we characterize two class 4 anti-RBD antibodies derived from coronavirus disease 2019 (COVID-19) donors that exhibit breadth and potent neutralization of zoonotic coronaviruses and SARS-CoV-2 variants. C118-RBD and C022-RBD structures reveal orientations that extend from the cryptic epitope to occlude ACE2 binding and CDRH3-RBD main-chain H-bond interactions that extend an RBD β sheet, thus reducing sensitivity to RBD side-chain changes. A C118-spike trimer structure reveals rotated RBDs that allow access to the cryptic epitope and the potential for intra-spike crosslinking to increase avidity. These studies facilitate vaccine design and illustrate potential advantages of class 4 RBD-binding antibody therapeutics.
[Display omitted]
•Donor-derived antibodies C118 and C022 recognize a highly conserved RBD epitope•Both antibodies cross-react and neutralize sarbecoviruses and SARS-CoV-2 VOCs•C118-RBD and C022-RBD crystal structures show long CDRH3s that extend RBD β sheet•C118-S cryo-EM structure suggests intra- and inter-spike crosslinking by C118 IgG
Jette et al. characterize antibodies derived from convalescent COVID-19 donors that broadly recognize sarbecoviruses and neutralize ACE2-tropic strains, including all SARS-CoV-2 variants of concern. Structures reveal binding to a highly conserved RBD epitope using long CDRH3 loops, with an orientation that inhibits ACE2 binding to the RBD and allows IgG avidity.