Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 119

Details

Autor(en) / Beteiligte
Titel
Predicting Low Cognitive Ability at Age 5—Feature Selection Using Machine Learning Methods and Birth Cohort Data
Ist Teil von
  • International journal of public health, 2022-11, Vol.67, p.1605047-1605047
Ort / Verlag
Frontiers Media S.A
Erscheinungsjahr
2022
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Objectives: In this study, we applied the random forest (RF) algorithm to birth-cohort data to train a model to predict low cognitive ability at 5 years of age and to identify the important predictive features. Methods: Data was from 1,070 participants in the Irish population-based BASELINE cohort. A RF model was trained to predict an intelligence quotient (IQ) score ≤90 at age 5 years using maternal, infant, and sociodemographic features. Feature importance was examined and internal validation performed using 10-fold cross validation repeated 5 times. Results The five most important predictive features were the total years of maternal schooling, infant Apgar score at 1 min, socioeconomic index, maternal BMI, and alcohol consumption in the first trimester. On internal validation a parsimonious RF model based on 11 features showed excellent predictive ability, correctly classifying 95% of participants. This provides a foundation suitable for external validation in an unseen cohort. Conclusion: Machine learning approaches to large existing datasets can provide accurate feature selection to improve risk prediction. Further validation of this model is required in cohorts representative of the general population.
Sprache
Englisch
Identifikatoren
ISSN: 1661-8564, 1661-8556
eISSN: 1661-8564
DOI: 10.3389/ijph.2022.1605047
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b0bd7e92627a4aa4ae0868daf95eec45

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX