Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 106

Details

Autor(en) / Beteiligte
Titel
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
Ist Teil von
  • Sensors (Basel, Switzerland), 2018-11, Vol.18 (11), p.3777
Ort / Verlag
Switzerland: MDPI
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The main objective of this research was to introduce a novel machine learning algorithm of alternating decision tree (ADTree) based on the multiboost (MB), bagging (BA), rotation forest (RF) and random subspace (RS) ensemble algorithms under two scenarios of different sample sizes and raster resolutions for spatial prediction of shallow landslides around Bijar City, Kurdistan Province, Iran. The evaluation of modeling process was checked by some statistical measures and area under the receiver operating characteristic curve (AUROC). Results show that, for combination of sample sizes of 60%/40% and 70%/30% with a raster resolution of 10 m, the RS model, while, for 80%/20% and 90%/10% with a raster resolution of 20 m, the MB model obtained a high goodness-of-fit and prediction accuracy. The RS-ADTree and MB-ADTree ensemble models outperformed the ADTree model in two scenarios. Overall, MB-ADTree in sample size of 80%/20% with a resolution of 20 m (area under the curve (AUC) = 0.942) and sample size of 60%/40% with a resolution of 10 m (AUC = 0.845) had the highest and lowest prediction accuracy, respectively. The findings confirm that the newly proposed models are very promising alternative tools to assist planners and decision makers in the task of managing landslide prone areas.
Sprache
Englisch
Identifikatoren
ISSN: 1424-8220
eISSN: 1424-8220
DOI: 10.3390/s18113777
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_b09ef6ffa04840298f5bdc20f752e52f

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX