Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 162
Scientific reports, 2023-11, Vol.13 (1), p.20259-20259, Article 20259
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Surrogate-based optimization design for surface texture of helical pair in helical hydraulic rotary actuator
Ist Teil von
  • Scientific reports, 2023-11, Vol.13 (1), p.20259-20259, Article 20259
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • A good surface texture design can effectively improve the tribological performance of the helical pair within a helical hydraulic rotary actuator(HHRA). However, the optimization design process can be time-consuming due to the multiple design variables involved and the complexity of the mathematical model. This paper proposes a modified efficient global optimization (MEGO) method for solving such demanding surface texture design challenges. The MEGO utilizes a Kriging model with the optimized Latin hypercube sampling (OLHS) for initial sampling and the proposed modified expected improvement (MEI) function for sequential sampling. A comparative study of several global optimization algorithms with the MEGO on the surface texture design is performed. Subsequently, surrogate-based optimization and parameter analysis are carried out, resulting in the identification of an optimal set of texture parameters. The findings reveal the superiority of the MEGO in both model prediction accuracy and refinement of minima. Moreover, compared to the base design, the friction coefficient can be reduced by up to 45.2%.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-023-47509-7
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_af5d4a28688246338db42161cdc7e57b

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX