Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 106
Remote sensing (Basel, Switzerland), 2024-08, Vol.16 (15), p.2858
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
On Unsupervised Multiclass Change Detection Using Dual-Polarimetric SAR Data
Ist Teil von
  • Remote sensing (Basel, Switzerland), 2024-08, Vol.16 (15), p.2858
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2024
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Change detection using SAR data has been an active topic in various applications. Because conventional change detection identifies signal changes in single-pol radar observations, they cannot separately detect different kinds of change associated with different ground parameters. In this study, we investigated the comprehensive use of dual-pol parameters and proposed a novel dual-pol-based change detection framework utilizing different dual-pol scatter-type indicators. To optimize the exploitation of dual-pol change information, we presented a two-step processing strategy that divides the multiclass change detection process into a binary detection step that identifies the presence of changes and the classification step that distinguishes the types of change. In the detection stage, each dual-pol parameter was considered as an independent information source. Assuming potential conflict between dual-pol parameters, a disjunctive combination of detection results from different dual-pol parameters was applied to obtain the final detection result. In the classification step, an unsupervised change classification strategy was proposed based on the change direction and magnitude of the dual-pol parameters within the change class. Experimental results exhibited significantly improved detectability across a wide change spectrum compared with previous dual-pol-based change detection approaches. They also demonstrated the possibility of distinguishing different semantic changes without in situ ground data.
Sprache
Englisch
Identifikatoren
ISSN: 2072-4292
eISSN: 2072-4292
DOI: 10.3390/rs16152858
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_aa8136360b0c414aa8e7ff82ede55e36

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX