Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
A Neural Network Approach for Building An Obstacle Detection Model by Fusion of Proximity Sensors Data
Ist Teil von
  • Sensors (Basel, Switzerland), 2018-02, Vol.18 (3), p.683
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Proximity sensors are broadly used in mobile robots for obstacle detection. The traditional calibration process of this kind of sensor could be a time-consuming task because it is usually done by identification in a manual and repetitive way. The resulting obstacles detection models are usually nonlinear functions that can be different for each proximity sensor attached to the robot. In addition, the model is highly dependent on the type of sensor (e.g., ultrasonic or infrared), on changes in light intensity, and on the properties of the obstacle such as shape, colour, and surface texture, among others. That is why in some situations it could be useful to gather all the measurements provided by different kinds of sensor in order to build a unique model that estimates the distances to the obstacles around the robot. This paper presents a novel approach to get an obstacles detection model based on the fusion of sensors data and automatic calibration by using artificial neural networks.
Sprache
Englisch
Identifikatoren
ISSN: 1424-8220
eISSN: 1424-8220
DOI: 10.3390/s18030683
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_a90d13bfe24d4f769eb82d2de5867c12

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX