Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 21
Frontiers in synaptic neuroscience, 2014, Vol.6 (APR), p.8-8
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Synaptic and nonsynaptic plasticity approximating probabilistic inference
Ist Teil von
  • Frontiers in synaptic neuroscience, 2014, Vol.6 (APR), p.8-8
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2014
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose functional effects are only partially understood in concert.
Sprache
Englisch
Identifikatoren
ISSN: 1663-3563
eISSN: 1663-3563
DOI: 10.3389/fnsyn.2014.00008
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_a42aad0cd56041c8a0fd9ccfe366f2cf

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX