Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 406

Details

Autor(en) / Beteiligte
Titel
Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures
Ist Teil von
  • Nature communications, 2023-09, Vol.14 (1), p.6066-20, Article 6066
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting. Glioma tumours are known to be heterogenous in mutation and gene expression patterns, but sampling limitations can lead to inaccurate detection of evolutionary events. Here, the authors carry out multi-omics analysis of multi-regional biopsies from 68 patients and show differential mutations in non-enhancing regions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX