Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 91
Entropy (Basel, Switzerland), 2021-03, Vol.23 (3), p.328
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Classification of Indoor Human Fall Events Using Deep Learning
Ist Teil von
  • Entropy (Basel, Switzerland), 2021-03, Vol.23 (3), p.328
Ort / Verlag
Switzerland: MDPI
Erscheinungsjahr
2021
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
  • Human fall identification can play a significant role in generating sensor based alarm systems, assisting physical therapists not only to reduce after fall effects but also to save human lives. Usually, elderly people suffer from various kinds of diseases and fall action is a very frequently occurring circumstance at this time for them. In this regard, this paper represents an architecture to classify fall events from others indoor natural activities of human beings. Video frame generator is applied to extract frame from video clips. Initially, a two dimensional convolutional neural network (2DCNN) model is proposed to extract features from video frames. Afterward, gated recurrent unit (GRU) network finds the temporal dependency of human movement. Binary cross-entropy loss function is calculated to update the attributes of the network like weights, learning rate to minimize the losses. Finally, sigmoid classifier is used for binary classification to detect human fall events. Experimental result shows that the proposed model obtains an accuracy of 99%, which outperforms other state-of-the-art models.
Sprache
Englisch
Identifikatoren
ISSN: 1099-4300
eISSN: 1099-4300
DOI: 10.3390/e23030328
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_a105dde8e4ae40b08273b651a567ca9a

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX