Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 299
Journal of computer applications in archaeology, 2024-01, Vol.7 (1), p.92-114
2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
AIKoGAM: An AI-driven Knowledge Graph of the Antiquities Market: Toward Automatised Methods to Identify Illicit Trafficking Networks
Ist Teil von
  • Journal of computer applications in archaeology, 2024-01, Vol.7 (1), p.92-114
Ort / Verlag
Ubiquity Press
Erscheinungsjahr
2024
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • The longstanding illicit trafficking of archaeological artefacts has persistently presented a global issue, posing a substantial threat to cultural heritage. This paper introduces an innovative automated system that utilises Natural Language Processing (NLP), Machine Learning (ML), and Social Network Analysis (SNA) to construct a Knowledge Graph for antiquities. The objective is to offer insights into the provenance of artefacts and identify potential instances of illicit trafficking. The paper delineates a comprehensive methodology, from the ontology to the Knowledge Graph. The methodology comprises four distinct phases: the initial phase involves tailoring existing ontologies to match project-specific needs; the second phase centres on selecting appropriate technologies, and scraping and text-mining tools are designed to extract pertinent data from textual sources; the third phase centres in the creation of a robust and accurate Knowledge Graph that captures artefact provenance. The paper suggests employing NLP models, specifically utilising Named Entity Recognition (NER) techniques. These models automatically extract relevant information from the unstructured provenance texts, organising them as events to which both objects and actors participated with their locations and dates. The final phase is concerned with defining and building the Knowledge Graph. The authors explore a property graph model that distinctively represents nodes and relationships, each augmented by associated properties. Employing an SNA approach, the model is projected in multiple network levels of ownership histories (actor-object network) or actor relationships (actor-actor network). This approach reveals patterns within the antiquities market. When integrated with the authors’ recommended strategies such as crowdsourced ontology definition, collaboration with reputable organisations for quality sources, and the application of transfer learning techniques, the suggested approach holds promising implications for the protection of cultural heritage.
Sprache
Englisch
Identifikatoren
ISSN: 2514-8362
eISSN: 2514-8362
DOI: 10.5334/jcaa.130
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_a086bed83b6d4ea79907b95715b87959

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX