Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several
Escherichia coli
mutants that extended lifespan of
Caenorhabditis elegans
. Here, using
1
H-NMR metabolite analyses and inter-species genetics, we demonstrate that
E. coli
mutants depleted of intracellular glucose extend
C. elegans
lifespans, serving as bona fide glucose-restricted (GR) diets. Unlike general DR, GR diets don’t reduce the fecundity of animals, while still improving stress resistance and ameliorating neuro-degenerative pathologies of Aβ
42
. Interestingly, AAK-2a, a new AMPK isoform, is necessary and sufficient for GR-induced longevity. AAK-2a functions exclusively in neurons to modulate GR-mediated longevity via neuropeptide signaling. Last, we find that GR/AAK-2a prolongs longevity through PAQR-2/NHR-49/Δ9 desaturases by promoting membrane fluidity in peripheral tissues. Together, our studies identify the molecular mechanisms underlying prolonged longevity by glucose specific restriction in the context of whole animals.
Although diet modulates aging, little is known about whether and how nutrient regulates longevity. Here, the authors show that glucose-restricted diets prolong longevity through series of conserved factors, such as neuronal AMPK, neuropeptide, AdipoR, PPARα, and Δ9 desaturases by promoting membrane fluidity.