Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 112

Details

Autor(en) / Beteiligte
Titel
Memristive Memory Enhancement by Device Miniaturization for Neuromorphic Computing
Ist Teil von
  • Advanced electronic materials, 2023-04, Vol.9 (4), p.n/a
Ort / Verlag
Seoul: John Wiley & Sons, Inc
Erscheinungsjahr
2023
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • The areal footprint of memristors is a key consideration in material‐based neuromorphic computing and large‐scale architecture integration. Electronic transport in the most widely investigated memristive devices is mediated by filaments, posing a challenge to their scalability in architecture implementation. Here, a compelling alternative memristive device is presented and it is demonstrated that areal downscaling leads to enhancement in the memristive memory window, while maintaining analog behavior, contrary to expectations. The device designs directly integrated on semiconducting Nb‐doped SrTiO3 (Nb:STO) allows leveraging electric field effects at edges, increasing the dynamic range in smaller devices. The findings are substantiated by studying the microscopic nature of switching using scanning transmission electron microscopy, in different resistive states, revealing an interfacial layer whose physical extent is influenced by applied electric fields. The ability of Nb:STO memristors to satisfy hardware and software requirements with downscaling, while significantly enhancing memristive functionalities, make them strong contenders for non‐von‐Neumann computing, beyond complementary metal–oxide–semiconductor. The ability to increase the resistance window in interface memristors by device miniaturization with high endurance and low variability is demonstrated. Direct integration on a semiconducting platform of Nb‐doped SrTiO3 allows for locally enhanced fields to tune the interfacial energy landscape. Scanning transmission electron microscopy shows an oxygen‐deficient interfacial layer, which is influenced by electric field and mediates switching.
Sprache
Englisch
Identifikatoren
ISSN: 2199-160X
eISSN: 2199-160X
DOI: 10.1002/aelm.202201111
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_99003a6f3dc142ed9f212c5063f8a5ba

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX