Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 16402
Scientific reports, 2021-09, Vol.11 (1), p.19515-19515, Article 19515
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy
Ist Teil von
  • Scientific reports, 2021-09, Vol.11 (1), p.19515-19515, Article 19515
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Recent advances in detectors for imaging and spectroscopy have afforded in situ, rapid acquisition of hyperspectral data. While electron energy loss spectroscopy (EELS) data acquisition speeds with electron counting are regularly reaching 400 frames per second with near-zero read noise, signal to noise ratio (SNR) remains a challenge owing to fundamental counting statistics. In order to advance understanding of transient materials phenomena during rapid acquisition EELS, trustworthy analysis of noisy spectra must be demonstrated. In this study, we applied machine learning techniques to denoise high frame rate spectra, benchmarking with slower frame rate “ground truths”. The results provide a foundation for reliable use of low SNR data acquired in rapid, in-situ spectroscopy experiments. Such a tool-set is a first step toward both automation in microscopy as well as use of these methods to interrogate otherwise poorly understood transformations.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-021-97668-8
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_9695c40528ec45e6bdfa40569fdb0f50

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX