Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 42
Journal of Electrical and Computer Engineering, 2020, Vol.2020 (2020), p.1-18
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An Evaluation of Deep Learning Methods for Small Object Detection
Ist Teil von
  • Journal of Electrical and Computer Engineering, 2020, Vol.2020 (2020), p.1-18
Ort / Verlag
Cairo, Egypt: Hindawi Publishing Corporation
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Small object detection is an interesting topic in computer vision. With the rapid development in deep learning, it has drawn attention of several researchers with innovations in approaches to join a race. These innovations proposed comprise region proposals, divided grid cell, multiscale feature maps, and new loss function. As a result, performance of object detection has recently had significant improvements. However, most of the state-of-the-art detectors, both in one-stage and two-stage approaches, have struggled with detecting small objects. In this study, we evaluate current state-of-the-art models based on deep learning in both approaches such as Fast RCNN, Faster RCNN, RetinaNet, and YOLOv3. We provide a profound assessment of the advantages and limitations of models. Specifically, we run models with different backbones on different datasets with multiscale objects to find out what types of objects are suitable for each model along with backbones. Extensive empirical evaluation was conducted on 2 standard datasets, namely, a small object dataset and a filtered dataset from PASCAL VOC 2007. Finally, comparative results and analyses are then presented.
Sprache
Englisch
Identifikatoren
ISSN: 2090-0147
eISSN: 2090-0155
DOI: 10.1155/2020/3189691
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_960c05452e414574881e1a51e1538917

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX