Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A computing scheme that can solve complex tasks is necessary as the big data field proliferates. Probabilistic computing (p-computing) paves the way to efficiently handle problems based on stochastic units called probabilistic bits (p-bits). This study proposes p-computing based on the threshold switching (TS) behavior of a Cu
0.1
Te
0.9
/HfO
2
/Pt (CTHP) diffusive memristor. The theoretical background of the p-computing resembling the Hopfield network structure is introduced to explain the p-computing system. P-bits are realized by the stochastic TS behavior of CTHP diffusive memristors, and they are connected to form the p-computing network. The memristor-based p-bit is likely to be ‘0’ and ‘1’, of which probability is controlled by an input voltage. The memristor-based p-computing enables all 16 Boolean logic operations in both forward and inverted operations, showing the possibility of expanding its uses for complex operations, such as full adder and factorization.
Designing a computing scheme to solve complex tasks as the big data field proliferates remains a challenge. Here, the authors present a probabilistic bit generation hardware built using the random nature of Cu
x
Te
1−
x
/HfO
2
/Pt memristors capable of performing logic gates with invertible mode, showing the expandability to complex logic circuits.