Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Insecticide-treated eave nets and window screens for malaria control in Chalinze district, Tanzania: a study protocol for a household randomised control trial
Long-lasting insecticidal nets (LLINs) have contributed to the reduction of malaria in sub-Saharan Africa, including Tanzania. However, they rely on daily user behaviour and high coverage which is difficult to maintain. Also, insecticide resistance among malaria vector mosquitoes is contributing to reduced efficacy of control tools. To overcome these problems, we propose to evaluate a new tool for house modification, the insecticide-treated eave nets (ITENs) in combination with insecticide-treated window screens (ITWS) incorporated with dual active ingredient (dual AI) for the control of malaria.
Four hundred and fifty (450) households with intact walls, open eaves without screens or nets on the windows in Chalinze district will be eligible and recruited upon written informed consent. The households will be randomly allocated into two arms: one with ITENs and ITWS installed and the other without. Malaria parasite detection using a quantitative polymerase chain reaction (qPCR) will be conducted shortly after the long rain (June/July, 2022) as the primary outcome and shortly after the short rain (January/February, 2022) as the secondary outcome. Other secondary outcomes include clinical malaria cases, and density of malaria vectors and nuisance after the short rain and long rain. In addition, surveys will be conducted in households with ITENs and ITWS to estimate the intervention's cost during installation, adverse effects one month after installation, and presence, fabric integrity and user acceptance six and twelve months after installation. Bioefficacy and chemical content will be evaluated twelve months after installation.
ITENs and ITWS have been shown in Kenya to reduce indoor mosquito density. However, it is not known if indoor mosquito density reduction translates into reduction of malaria cases. Data from the study will measure the potential public health value of an additional intervention for malaria control at the household level in areas of mosquito insecticide resistance that does not require daily adherence.
The study is registered on ClinicalTrials.gov .