Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 6116

Details

Autor(en) / Beteiligte
Titel
Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria
Ist Teil von
  • Materials, 2021-05, Vol.14 (11), p.2854
Ort / Verlag
Basel: MDPI AG
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
Beschreibungen/Notizen
  • Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xenograft, used pure or enriched with bone marrow mononuclear fraction for the regeneration of critical size bone defects in rat calvaria through histomorphometric (Masson’s staining) and immunohistochemical (anti-VEGF, anti-osteopontin) analysis. Forty young adult male rats were divided into five groups (n = 8). Animals were submitted to critical size bone defects (Ø = 8 mm) in the temporoparietal region. In the control group, there was no biomaterial placement in the critical bone defects; in group 1, it was filled with synthetic hydroxyapatite; in group 2, it was filled with xenograft; in group 3, it was filled with synthetic hydroxyapatite, enriched with bone marrow mononuclear fraction (BMMF), and in group 4 it was filled with xenograft, enriched with BMMF. After eight weeks, all groups were euthanized, and histological section images were captured and analyzed. Data analysis showed that in groups 1, 2, 3 and 4 (received biomaterials and biomaterials plus BMMF), a significant enhancement in new bone matrix formation was observed in relation to the control group. However, BMMF-enriched groups did not differ from hydroxyapatite-based biomaterials-only groups. Therefore, in this experimental model, BMMF did not enhance hydroxyapatite-based biomaterials’ potential to induce bone matrix and related mediators.
Sprache
Englisch
Identifikatoren
ISSN: 1996-1944
eISSN: 1996-1944
DOI: 10.3390/ma14112854
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_8e8a7aedbbb14f22b22d196e124d0479

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX