Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 4982

Details

Autor(en) / Beteiligte
Titel
Automated digital TIL analysis (ADTA) adds prognostic value to standard assessment of depth and ulceration in primary melanoma
Ist Teil von
  • Scientific reports, 2021-02, Vol.11 (1), p.2809-2809, Article 2809
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Accurate prognostic biomarkers in early-stage melanoma are urgently needed to stratify patients for clinical trials of adjuvant therapy. We applied a previously developed open source deep learning algorithm to detect tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) images of early-stage melanomas. We tested whether automated digital (TIL) analysis (ADTA) improved accuracy of prediction of disease specific survival (DSS) based on current pathology standards. ADTA was applied to a training cohort (n = 80) and a cutoff value was defined based on a Receiver Operating Curve. ADTA was then applied to a validation cohort (n = 145) and the previously determined cutoff value was used to stratify high and low risk patients, as demonstrated by Kaplan–Meier analysis (p ≤ 0.001). Multivariable Cox proportional hazards analysis was performed using ADTA, depth, and ulceration as co-variables and showed that ADTA contributed to DSS prediction (HR: 4.18, CI 1.51–11.58, p = 0.006). ADTA provides an effective and attainable assessment of TILs and should be further evaluated in larger studies for inclusion in staging algorithms.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-021-82305-1
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_8d415bf272d94264979172564903d21c

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX