Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 114
Frontiers in physiology, 2019-06, Vol.10, p.738-738
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Progression of Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations
Ist Teil von
  • Frontiers in physiology, 2019-06, Vol.10, p.738-738
Ort / Verlag
Switzerland: Frontiers Media S.A
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Blood flow restriction (BFR) resistance training leads to increased muscle mass and strength but the progression leading to adaptations may be different as strength gains are often to a lesser magnitude than high-load (HL) training. The impact of training loads and repetitions on older adults' muscle mass and strength following BFR or HL training was evaluated. Twenty-one older adults (67-90 years) classified as being at risk of mobility limitations were randomly assigned to HL ( = 11) or BFR ( = 10) knee extension (KE) and flexion (KF) training twice per week for 12 weeks. Strength was measured with 10-repetition maximum (10-RM) tests and isometric contractions. Cross-sectional area (CSA) of the quadriceps and hamstrings was measured. HL and BFR interventions increased 10-RM KF and isometric strength ( < 0.05) and hamstrings CSA increased an average of 4.8 ± 5.9% after HL and BFR training (time main effect < 0.01). There were no differences between the training groups (time x group interactions > 0.05). The rate of progression of KF training load and repetitions was comparable (time × group interactions of each variable > 0.05). The groups averaged an increase of 0.50 ± 25 kg⋅week and 1.8 ± 0.1.7 repetitions⋅week of training (time main effects < 0.05). The HL training group experienced greater improvements in KE 10-RM strength than the BFR group (60.7 ± 36.0% vs. 35.3 ± 25.5%; = 0.03). In both groups, isometric KE strength increased 17.3 ± 18.5% ( = 0.001) and there were no differences between groups ( = 0.24). Quadriceps CSA increased (time main effect < 0.01) and to similar magnitudes (time x group interaction = 0.62) following HL (6.5 ± 3.1%) and BFR training (7.8 ± 8.2%). The HL group experienced accelerated progression of load when compared to BFR (0.90 ± 0.60 kg⋅week vs. 30 ± 0.21 kg⋅week ; = 0.006) but was not different when expressed in relative terms. BFR training progressed at a rate of 3.6 ± 1.3 repetitions⋅week while the HL group progressed at 2.2 ± 0.43 repetitions⋅week ( = 0.003). HL training led to greater increases in KE 10-RM and it may be attributed to the greater load and/or faster rate of progression of the load throughout the 12-week training period and the specificity of the testing modality. Incorporating systematic load progression throughout BFR training periods should be employed to lead to maximal strength gains.
Sprache
Englisch
Identifikatoren
ISSN: 1664-042X
eISSN: 1664-042X
DOI: 10.3389/fphys.2019.00738
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_860ad3a73f454fc4aa6b19431b7764ea

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX