Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 6

Details

Autor(en) / Beteiligte
Titel
STLGBM-DDS: An Efficient Data Balanced DoS Detection System for Wireless Sensor Networks on Big Data Environment
Ist Teil von
  • IEEE access, 2022, Vol.10, p.92931-92945
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2022
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Wireless Sensor Networks(WSNs) are vulnerable to a variety of unique security risks and threats in their data collection and transmission processes. One of the most common attacks on WSNs that can target all layers of the protocol stack is the DoS attack. In this study, a unique DoS Intrusion Detection System (DDS) is proposed to detect DoS attacks specific to WSNs. The proposed system is an ensemble intrusion detection system called STLGBM-DDS, which is developed on Apache Spark big data platform in Google Colab environment, combining LightGBM machine learning algorithm, data balancing and feature selection processes. In order to reduce the effects of data imbalance on system performance, data imbalance processing consisting of Synthetic Minority Oversampling Technique (SMOTE) and Tomek-Links sampling methods called STL was used. In addition, Information Gain Ratio was used as a feature selection technique in the data preprocessing stage. The effects of both data balancing and feature selection stages on the detection performance of the system were investigated. The results obtained were evaluated using the Accuracy, F-Measure, Precision, Recall, ROC Curve and Precision-Recall Curve parameters. As a result, the proposed method achieved an overall accuracy of 99.95%. Also, it achieved 99.99%, 99.96%, 99.98%, 99.92%, and 99.87% accuracy performance according to Normal, Grayhole, Blackhole, TDMA and Flooding classes, respectively. According to the results obtained, the proposed method has achieved very successful results in DoS attack detection in WSNs compared to current methods.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2022.3202807
Titel-ID: cdi_doaj_primary_oai_doaj_org_article_8428a9136083415ca6f235713dfa4204

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX